首页  /  数据结构教程  /  树与森林  /  

树与森林

点击打开在线编译器,边学边练

1. 什么是森林

森林,顾名思义,就是由众多的树构成的一组数据结构,这些树本身没有什么联系,用系统的语言描述就是:森林:m(>=0)棵互不相交的树的集合 【注意这里森林是可以有0颗树的,同数学上的空集】

如果把一棵树当作一个独立的点,那么森林就是一个点的集合。

2. 树转换成二叉树

操作过程如下:

加线:在兄弟(即同一层之间的孩子)之间加一连线

抹线:对每个结点,除了其第一个孩子外,除去其与其余孩子之间的连线

旋转:以树的根结点为轴心,将整树顺时针转45°

如图:

21.png

注意:树转换成二叉树其右子树一定为空

3. 二叉树转换成树

加线:若p结点是双亲结点的左孩子,则将p的右孩子,右孩子的右孩子,……沿分支找到的所有右孩子,都与p的双亲用线连起来

抹线:抹掉原二叉树中双亲与右孩子之间的连线

调整:将结点按层次排列,形成树结构

如图:

22.png


4. 森林转换成二叉树

将各棵树分别转换成二叉树

将每棵树的根结点用线相连

以第一棵树根结点为二叉树的根,再以根结点为轴心,顺时针旋转,构成二叉树型结构

如图:

24.png


5. 二叉树转换成森林

抹线:将二叉树中根结点与其右孩子连线,及沿右分支搜索到的所有右孩子间连线全部抹掉,使之变成孤立的二叉树

还原:将孤立的二叉树还原成树(二叉树→树)

如图:

23.png




第一章 数据结构入门
第二章 链表
第三章 栈
第四章 队列
第五章 从C语言到C++
第六章 串,数组,矩阵,广义表
第七章 树
第八章 图
第九章 算法—查找
第十章 算法—排序
第十一章 算法&竞赛,思维培养
第十二章 后记