Dotcpp  >  编程教程  >  搜索算法  >  回溯法入门级讲解

回溯法入门级讲解

点击打开在线编译器,边学边练

说到回溯法,其实就是暴力搜索,并不是什么高效的算法,最多再剪枝一下。

回溯算法能解决如下问题:

(1)组合问题:N个数里面按一定规则找出k个数的集合

(2)排列问题:N个数按一定规则全排列,有几种排列方式

(3)切割问题:一个字符串按一定规则有几种切割方式

(4)子集问题:一个N个数的集合里有多少符合条件的子集

(5)棋盘问题:N皇后,解数独等等回溯法确实不好理解,所以需要把回溯法抽象为一个图形来理解就容易多了,「在后面的每一道回溯法的题目我都将遍历过程抽象为树形结构方便大家的理解」。

本篇主要介绍回溯法的概念和应用。


一、回溯法 – 深度优先搜素                       

(1)简单概述

回溯法思路的简单描述是:把问题的解空间转化成了图或者树的结构表示,然后使用深度优先搜索策略进行遍历,遍历的过程中记录和寻找所有可行解或者最优解。

基本思想类同于:

1. 图的深度优先搜索

2. 二叉树的后序遍历

分支限界法:广度优先搜索

思想类同于:

1. 图的广度优先遍历

2. 二叉树的层序遍历


(2)详细描述

详细的描述则为:

回溯法按深度优先策略搜索问题的解空间树。首先从根节点出发搜索解空间树,当算法搜索至解空间树的某一节点时,先利用剪枝函数判断该节点是否可行(即能得到问题的解)。如果不可行,则跳过对该节点为根的子树的搜索,逐层向其祖先节点回溯;否则,进入该子树,继续按深度优先策略搜索。

 回溯法的基本行为是搜索,搜索过程使用剪枝函数来为了避免无效的搜索。剪枝函数包括两类:1. 使用约束函数,剪去不满足约束条件的路径;2.使用限界函数,剪去不能得到最优解的路径。

问题的关键在于如何定义问题的解空间,转化成树(即解空间树)。解空间树分为两种:子集树和排列树。两种在算法结构和思路上大体相同。


(3)回溯法应用

当问题是要求满足某种性质(约束条件)的所有解或最优解时,往往使用回溯法。

它有“通用解题法”之美誉。


二、回溯法实现 - 递归和递推(迭代)                               

回溯法的实现方法有两种:递归和递推(也称迭代)。一般来说,一个问题两种方法都可以实现,只是在算法效率和设计复杂度上有区别。

【类比于图深度遍历的递归实现和非递归(递推)实现】

(1)递归:思路简单,设计容易,但效率低,其设计范式如下:

//针对N叉树的递归回溯方法  
void backtrack (int t)  
{  
    if (t>n) output(x); //叶子节点,输出结果,x是可行解  
    else  
       for i = 1 to k//当前节点的所有子节点  
        {  
            x[t]=value(i); //每个子节点的值赋值给x  
            //满足约束条件和限界条件  
          if (constraint(t)&&bound(t))   
                backtrack(t+1);  //递归下一层  
        }  
}

(2)递推:算法设计相对复杂,但效率高

//针对N叉树的迭代回溯方法  
void iterativeBacktrack ()  
{  
    int t=1;  
    while (t>0) {  
        if(ExistSubNode(t)) //当前节点的存在子节点  
        {  
            for i = 1 to k  //遍历当前节点的所有子节点  
            {  
                x[t]=value(i);//每个子节点的值赋值给x  
                if (constraint(t)&&bound(t))//满足约束条件和限界条件   
                {  
                    //solution表示在节点t处得到了一个解  
                    if (solution(t)) output(x);//得到问题的一个可行解,输出  
                    else t++;//没有得到解,继续向下搜索  
                }  
            }  
        }  
        else //不存在子节点,返回上一层  
        {  
            t--;  
        }  
    }  
}


三、子集树和排列树                                                        

(1)子集树

所给的问题是从n个元素的集合S中找出满足某种性质的子集时,相应的解空间成为子集树。

如0-1背包问题,从所给重量、价值不同的物品中挑选几个物品放入背包,使得在满足背包不超重的情况下,背包内物品价值最大。它的解空间就是一个典型的子集树。

回溯法搜索子集树的算法范式如下:

void backtrack (int t)  
{  
  if (t>n) output(x);  
    else  
      for (int i=0;i<=1;i++) {  
        x[t]=i;  
        if (constraint(t)&&bound(t)) backtrack(t+1);  
      }  
}

(2)排列树

所给的问题是确定n个元素满足某种性质的排列时,相应的解空间就是排列树。

如旅行售货员问题,一个售货员把几个城市旅行一遍,要求走的路程最小。它的解就是几个城市的排列,解空间就是排列树。

回溯法搜索排列树的算法范式如下:

void backtrack (int t)  
{  
  if (t>n) output(x);  
    else  
      for (int i=t;i<=n;i++) {  
        swap(x[t], x[i]);  
        if (constraint(t)&&bound(t)) backtrack(t+1);  
        swap(x[t], x[i]);  
      }  
}



知识点标签:回溯


本文固定URL:https://www.dotcpp.com/course/957

算法竞赛教程
第一章 算法基础
第二章 搜索算法
第三章 排序算法
第四章 字符串相关
第五章 数学相关
第六章 动态规划
第七章 数据结构
第八章 图论
第九章 计算几何
第十章 其他算法
Dotcpp在线编译      (登录可减少运行等待时间)